Speech Processing CheatSheet

Reading Time: ~10 minLast Modified: July 29, 2025

Keywords: #SignalProcessing, #SpeechProcessing, #FFT, #STFT.

ExpressionDefinitionMeaning or Interpretation
\(x[n]\)Discrete signal in waveformV
\( E(x[n]) \)\( E(x[n]) = \sum_{n=0}^{N-1} |x[n]|^2 \)Energy of the signal in time domains
\( P(x[n]) \)\( P(x[n]) = \frac{E(x[n])}{N} = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2 \)Power of the signal in time domains
\(X[f]\)\( X[f] = \sum_{n=0}^{N-1} x[n] \cdot e^{-j 2\pi f n / N} \)Fast Fourier transform (FFT)V
\(|X[f]|\)\( |X[f]| = \sqrt{\text{Re}(X[f])^2 + \text{Im}(X[f])^2} \)Magnitude spectrumV
\(|X[f]|^2\)\( |X[f]|^2 = \text{Re}(X[f])^2 + \text{Im}(X[f])^2 \)Power spectrumV
\( |X[f]|^{\gamma} \)\( |X[f]|^{\gamma} = (\text{Re}(X[f])^2 + \text{Im}(X[f])^2)^{\frac{\gamma}{2}} \)Power-law spectrumV
\( E(X[f]) \)\( E(X[f]) = \sum_{n=0}^{N-1} |X[f]|^2 \)Energy of the signal in frequency domains
\( P(X[f]) \)\( P(X[f]) = \frac{E(X[f])}{N} = \frac{1}{N} \sum_{n=0}^{N-1} |X[f]|^2 \)Power of the signal in frequency domains
\( ||X[f])||_2 \)\( ||X[f])||_2 = \sqrt{\sum_{n=0}^{N-1} |X[f]|^2} = \sqrt{E(X[f])} \)L2-norm (or Euclidean norm) of the FFT or the square root of the energys
\( ||X[f])||_2^2 \)\( ||X[f])||_2^2 = \sum_{n=0}^{N-1} |X[f]|^2 = E(X[f]) \)Squared L2-norm (or Euclidean norm) of the FFT or the energys
\(X[t,f]\)\( X[t, f] = \sum_{n=0}^{N-1} x[n + tH] \cdot w[n] \cdot e^{-j \frac{2\pi fn}{N}} \)Short-time Fourier transform (STFT)M
\(|X[t,f]|\)\( |X[t,f]| = \sqrt{\text{Re}(X[t,f])^2 + \text{Im}(X[t,f])^2} \)Magnitude spectrogramM
\(|X[t,f]|^2\)\( |X[t,f]|^2 = \text{Re}(X[t,f])^2 + \text{Im}(X[t,f])^2 \)Power spectrogram (commonly called "spectrogram" in DSP)M
\(|X[t,f]|^{\gamma}\)\( |X[t,f]|^{\gamma} = (\text{Re}(X[t,f])^2 + \text{Im}(X[t,f])^2)^{\frac{\gamma}{2}} \)Power-law spectrogramM

s = scale, V = vector, M = Matrix

Mathematical Functions
\(|\cdot|\)Absolute value, modulus or magnitude (\( \forall z \in \mathbb{C}; \; |z| = \sqrt{\text{Re}(z)^2 + \text{Im}(z)^2})\)
\(|| \cdot ||_2\)Euclidean norm or \(\mathcal{L}_{2}\)-norm ( \(A \in \mathbb{R}^{m \times n} \text{or} \mathbb{C}^{m \times n};\;\ ||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} \))
\(|| \cdot ||_F\)Frobenius norm